Subscription Services: Subscribe | Change | Unsubscribe | RSS
Advertising Media Kit: Introduction | Rates | Testimonial | Contact
Miscellaneous: Reference Desk | Sitemap

Study: Ocean Acidification Rate May Be Unprecedented; Few Parallels In 300-Million-Yr Geologic Record

print this print      Bookmark and Share   RSS 2.0 feed

PALISADES, New York -- More catastrophic events have shaken earth before, but perhaps not as quickly. The study finds two other times of potential ocean acidification: the extinctions triggered by massive volcanism at the end of the Permian and Triassic eras, about 252 million and 201 million years ago respectively. But the authors caution that the timing and chemical changes of these events is less certain. Because most ocean sediments older than 180 million years have been recycled back into the deep earth, scientists have fewer records to work with.

During the end of the Permian, about 252 million years ago, massive volcanic eruptions in present-day Russia led to a rise in atmospheric carbon, and the extinction of 96 percent of marine life. Scientists have found evidence for ocean dead zones and the survival of organisms able to withstand carbonate-poor seawater and high blood-carbon levels, but so far they have been unable to reconstruct changes in ocean pH or carbonate.

At the end of the Triassic, about 201 million years ago, a second burst of mass volcanism doubled atmospheric carbon. Coral reefs collapsed and many sea creatures vanished. Noting that tropical species fared the worst, some scientists question if global warming rather than ocean acidification was the main killer at this time.

The effects of ocean acidification today are overshadowed for now by other problems, ranging from sewage pollution and hotter summer temperatures that threaten corals with disease and bleaching. However, scientists trying to isolate the effects of acidic water in the lab have shown that lower pH levels can harm a range of marine life, from reef and shell-building organisms to the tiny snails favored by salmon. In a recent study, scientists from Stony Brook University found that the larvae of bay scallops and hard clams grow best at pre-industrial pH levels, while their shells corrode at the levels projected for 2100. Off the U.S. Pacific Northwest, the death of oyster larvae has recently been linked to the upwelling of acidic water there.

In parts of the ocean acidified by underwater volcanoes venting carbon dioxide, scientists have seen alarming signs of what the oceans could be like by 2100. In a 2011 study of coral reefs off Papua New Guinea, scientists writing in the journal Nature Climate Change found that when pH dropped to 7.8, reef diversity declined by as much as 40 percent. Other studies have found that clownfish larvae raised in the lab lose their ability to sniff out predators and find their way home when pH drops below 7.8.

"It's not a problem that can be quickly reversed," said Christopher Langdon, a biological oceanographer at the University of Miami who co-authored the study on Papua New Guinea reefs. "Once a species goes extinct it's gone forever. We're playing a very dangerous game."

It may take decades before ocean acidification's effect on marine life shows itself. Until then, the past is a good way to foresee the future, says Richard Feely, an oceanographer at the National Oceanic and Atmospheric Administration who was not involved in the study. "These studies give you a sense of the timing involved in past ocean acidification events—they did not happen quickly," he said. "The decisions we make over the next few decades could have significant implications on a geologic timescale."

More catastrophic events have shaken earth before, but perhaps not as quickly. The study finds two other times of potential ocean acidification: the extinctions triggered by massive volcanism at the end of the Permian and Triassic eras, about 252 million and 201 million years ago respectively. But the authors caution that the timing and chemical changes of these events is less certain. Because most ocean sediments older than 180 million years have been recycled back into the deep earth, scientists have fewer records to work with.

During the end of the Permian, about 252 million years ago, massive volcanic eruptions in present-day Russia led to a rise in atmospheric carbon, and the extinction of 96 percent of marine life. Scientists have found evidence for ocean dead zones and the survival of organisms able to withstand carbonate-poor seawater and high blood-carbon levels, but so far they have been unable to reconstruct changes in ocean pH or carbonate.

At the end of the Triassic, about 201 million years ago, a second burst of mass volcanism doubled atmospheric carbon. Coral reefs collapsed and many sea creatures vanished. Noting that tropical species fared the worst, some scientists question if global warming rather than ocean acidification was the main killer at this time.

The effects of ocean acidification today are overshadowed for now by other problems, ranging from sewage pollution and hotter summer temperatures that threaten corals with disease and bleaching. However, scientists trying to isolate the effects of acidic water in the lab have shown that lower pH levels can harm a range of marine life, from reef and shell-building organisms to the tiny snails favored by salmon. In a recent study, scientists from Stony Brook University found that the larvae of bay scallops and hard clams grow best at pre-industrial pH levels, while their shells corrode at the levels projected for 2100. Off the U.S. Pacific Northwest, the death of oyster larvae has recently been linked to the upwelling of acidic water there.

In parts of the ocean acidified by underwater volcanoes venting carbon dioxide, scientists have seen alarming signs of what the oceans could be like by 2100. In a 2011 study of coral reefs off Papua New Guinea, scientists writing in the journal Nature Climate Change found that when pH dropped to 7.8, reef diversity declined by as much as 40 percent. Other studies have found that clownfish larvae raised in the lab lose their ability to sniff out predators and find their way home when pH drops below 7.8.

"It's not a problem that can be quickly reversed," said Christopher Langdon, a biological oceanographer at the University of Miami who co-authored the study on Papua New Guinea reefs. "Once a species goes extinct it's gone forever. We're playing a very dangerous game."

It may take decades before ocean acidification's effect on marine life shows itself. Until then, the past is a good way to foresee the future, says Richard Feely, an oceanographer at the National Oceanic and Atmospheric Administration who was not involved in the study. "These studies give you a sense of the timing involved in past ocean acidification events—they did not happen quickly," he said. "The decisions we make over the next few decades could have significant implications on a geologic timescale."

Views expressed in this article do not necessarily reflect those of UnderwaterTimes.com, its staff or its advertisers.


bottom_left
bottom_right
Privacy Policy     © Copyright 2020 UnderwaterTimes.com. All rights reserved